POSITIONS AND AREAS OF SUN SPOTS-Continued ## POSITIONS AND AREAS OF SUN SPOTS-Continued | | East- | Mt | н | eliograp | hic | Aı | rea | | | | East- | M | В | leliograp | hic | A | rea | | | |---------|------------------------------|--|--|--|--|--|-----------------------------|---|--------------|---|---|--|--|--|--|--|----------------------------------|-------------------------------------|---| | Date | ern
stand-
ard
time | Mt.
Wilson
group
No. | Diff.
in
longi-
tude | Longi-
tude | Lati-
tude | Spot
or
group | Total
for
each
day | Spot
count | Observatory | Date | ern
stand-
ard
time | Mt.
Wilson
group
No. | Diff.
in
longi-
tude | Longi-
tude | | | Total
for
each
day | Spot
count | Observatory | | June 21 | h m
13 8 | 5942
5948
5946
5947
5939
5945
5934
5953
5944 | -37. 0
-15. 0
-15. 0
-13. 0
-12. 0
-8. 0
+37. 0
+51. 0
+53. 0 | 311. 2
333. 2
333. 2
335. 2
336. 2
340. 2
25. 2
39. 2
41. 2 | +7.0
-25.0
+22.0
+13.0
+6.0
-20.0
+6.0
+16.0
+20.0 | 24
24
73
48
970
24
339
24
97 | 1.623 | 4
7
16
10
50
6
5
2 | U. S. Naval. | June 29 | h m
10 58 | 5966
5962
5957
5961
5956
5960
5959
5954
5965 | -69. 0
-48. 0
-39. 5
-30. 0
-23. 0
-3. 0
+4. 0
+35. 0 | 174, 5
195, 5
204, 0
218, 5
220, 5
240, 5
247, 5
275, 5
278, 5 | -25. 0
-7. 5
-12. 0
-22. 0
+27. 0
+3. 0
-7. 0
+17. 0
+7. 0 | 6
194
436
533
145
36
97
24
6 | | 1
40
28
11
9
13
2 | U. S. Naval | | June 22 | 13 27 | 5948
5946
5939
5947
5945
5934
5944 | $ \begin{array}{r} -2.0 \\ -0.5 \\ +1.5 \\ +2.0 \\ +7.0 \\ +50.5 \\ +65.0 \end{array} $ | 332. 8
334. 3
336. 3
336. 8
341. 8
25. 3
39. 8 | -25. 0
+22. 0
+6. 0
+13. 0
-20. 0
+5. 0
+20. 0 | 12
291
824
12
48
388
16 | 1, 591 | 1
22
62
1
7
1 | Do. | June 30 | 11 11 | 5964
5963
5946
5962
5957
5961
5956
5960 | +58. 0
+66. 0
+88. 0
-34. 5
-25. 0
-16. 0
-10. 0
+10. 0 | 301. 5
309. 5
331. 5
195. 6
205. 1
214. 1
220. 1
240. 1 | -7.0
+9.0
+22.0
-8.0
-11.5
-22.0
+27.0
+3.0 | 97
48
194
436
533
145
36 | 1, 628 | 3
7
2
1
46
37 | Do. | | June 23 | 11 12 | (*)
5946
5939
5945
5949
5934 | $ \begin{array}{r} -11.0 \\ +12.0 \\ +14.0 \\ +19.0 \\ +41.5 \\ +63.0 \end{array} $ | 311. 8
334. 8
336. 8
341. 8
4. 3
25. 8 | +7.0
+22.0
+6.0
-20.5
+6.0
+5.0 | 6
436
679
97
6
388 | 1, 612 | 3
20
50
7
2
2 | Do. | Mean da | aily area | 5959
5963 | +17. 0
+78. 0 | 247. 1
308. 1 | +3.0
-7.0
+9.0 | 97
12 | 1, 453 | 11
2 | | | June 24 | 10 28 | 5951
5946
5939
5945
5950
5934 | +11.0
+24.0
+26.0
+32.0
+39.0
+77.0 | 321. 0
334. 0
336. 0
342. 0
349. 0
27. 0 | +7.0
+22.0
+6.0
-20.0
-7.0
+5.0 | 12
485
533
48
12
388 | 1, 478 | 2
25
45
6
2
1 | Do. | | | [Dep | endent | JUN:
alone on | E 193
observa | 8
itions a | t Zurich] | 1 | RS FOR | | June 25 | 11 3 | 5952
5946
5939
5945
5950 | +9.0
+37.0
+40.0
+43.0
+53.0 | 305. 4
333. 4
336. 4
339. 4
349. 4 | +7.0 $+22.0$ $+6.0$ -21.0 -8.0 | 436
533
48
24 | 1,047 | 1
20
32
7
4 | Do. | June 1938 | Re | lative | June | Swit | rof. W.
zerland]
 | ve | r, Eidge

June 193 | | Relative numbers | | June 26 | 13 8 | 5957
5956
5955
5954
5953
5946
5939 | -81. 0
-60. 0
-48. 0
-12. 5
-3. 0
+52. 0
+55. 0 | 201. 0
222. 0
234. 0
269. 5
279. 0
334. 0
337. 0 | $\begin{array}{c} -11.5 \\ +27.0 \\ -8.0 \\ +19.0 \\ -8.0 \\ +22.0 \\ +6.0 \end{array}$ | 291
48
6
48
12
436
436 | 1, 277 | 7
6
1
4
2
16
11 | Do. | 1
2
3
4 | - | 113
a 100
a 107
103 | 12
13
14 | | b 1 | 06 | 21
22
23
24 | | Ec 103
ab 101
98
87 | | June 27 | 9 5 | 5962
5957
5961
5956
5960
5959
5954
5953
5946
5939 | -78. 0
-69. 0
-58. 0
-50. 0
-33. 0
-27. 0
+1. 0
+8. 0
+65. 0
+69. 0 | 193. 0
202. 0
213. 0
221. 0
238. 0
244. 0
272. 0
279. 0
336. 0
340. 0 | -7.0
-11.0
-21.0
+27.0
+3.0
-7.0
+20.0
-7.0
+24.0
+7.0 | 194
436
48
73
36
48
48
36
533
436 | 1,838 | 1
15
5
14
5
10
2
5
12
14 | Mt. Wilson. | 6
7
8
9
10 | $\begin{bmatrix} E \\ M \\ Wa \end{bmatrix}$ | d 91 ac 84 c 134 c 139 d 115 a — | 15
16
17
18
19
20 | | $oldsymbol{d}$ | 76
76
56
69 | 25
26
27
28
29
30 | | 76
72
EEccdd 108
106
128
119 | | June 28 | 8 58 | 5962
5957
5961
5956
5960
5959
5954
5946
5939 | -64. 0
-55. 0
-45. 0
-37. 0
-19. 0
-13. 0
+14. 0
+78. 0
+79. 0 | 193. 8
202. 8
212. 8
220. 8
228. 8
244. 8
271. 8
335. 8
336. 8 | $\begin{array}{c} -7.0 \\ -10.5 \\ -21.0 \\ +27.0 \\ +3.0 \\ -7.0 \\ +19.0 \\ +23.0 \\ +7.0 \end{array}$ | 194
436
242
121
36
61
36
436
97 | 1, 659 | 1
20
8
14
9
10
2
5 | Do. | a = Passage b = Passage c = New fo E, on | e of an a
e of a lar
ermation
the eas
zone. | rge group
of a gro
stern par | ized group
or spot
oup deve
t of the | through
eloping i
sun's di | the cen
nto a m
sk; W, o | tral me
iddle-si
n the w | ridan.
zed or la
zestern p | irge cen
eart; M, | ter of activity:
in the central | AEROLOGICAL OBSERVATIONS [Aerological Division, D. M. LITTLE in Charge] By B. Francis Dashiell Mean free-air data, for the month of June 1938, based on a total of 817 airplane and radiometeorograph observations, are given in table 1. This information includes the basic meteorological elements of barometric pressure (P), temperature (T), and relative humidity (R.H.), recorded at certain geometric heights. These "means" are computed by the customary method of differences, and are omitted when less than 15 observations have been made at the surface and less than 5 at a standard height. However, at those standard heights within the limits of the monthly vertical range of the tropopause, at least 15 observations are required. Further details will be found under "Aerological Observations," appearing in the January 1938, Monthly Weather Review. Chart I, published elsewhere in this Review, shows the departures of mean surface temperatures from normal during June. These departures were moderate over most of the United States, but reached above-normal maxima over the Northwestern States (except on the Pacific coast itself), the northern Rocky Mountains, New England, and western Texas. The greatest departure above normal was +4.1° F. at Walla Walla, Wash. In the southeastern states and Ohio Valley temperatures were slightly below normal, as compared to an above-normal departure in May; the largest departure below normal (-3.1° F.) occurred at Pittsburgh, Pa. The highest mean free-air temperature (°C.) for June (table 1) prevailed over Kelly Field, Tex., at the surface; over Pensacola, Fla., at 0.5 kilometer; Oklahoma City, Okla., and Kelly Field, Tex., at 1 kilometer; El Paso, Tex., at 1.5, 2, 2.5, 3, and 4 kilometers; and over Kelly Field, Tex., at 5 kilometers. The highest temperature recorded at any level above the surface was 23.1° C. over Kelly Field, Tex., at 0.5 kilometer. Low temperatures existed generally over the northern and northeastern states, but were seasonally warmer than during the preceding month of May. Temperatures for the entire United States were lowest over Sault Ste. Marie, Mich., at all levels, except 4 kilometers, and a minimum of -10.4 °C. was reached at 5 kilometers. The lowest at 4 kilometers occurred over Lakehurst, N. J. Temperatures at all stations were higher than those observed the previous month; the closest approach to the May temperature being over Burbank, Calif., at 0.5 kilometer. The mean free-air barometric pressures (in millibars) are shown in table 1. Entered on an isobaric chart they indicated that a statistical center of low atmospheric pressure prevailed east of the north-central states. It was located over Sault Ste. Marie, Mich., at all levels above 1 kilometer. During the preceding month of May this center was located more to the east, over Boston, Mass., but in June it was identical to the condition which prevailed in April, except that June pressures generally were higher.
In the lower levels a low-pressure area also was centered over Burbank, Calif. A slight tendency toward low pressure was noted over Salt Lake City, Utah, up to 3 kilometers. A belt of low pressure at 5 kilometers extended in an east-west direction across the United States from Boston, Mass., to Spokane, Wash., and from Washington, D. C., to Oakland, Calif. High pressures existed generally over the southeast at all levels up to 2.5 kilometers, particularly over Norfolk, Va., Maxwell Field, Ala., and Pensacola, Fla. Above 2.5 kilometers high pressures prevailed farther to the southwest; over Barksdale Field, La., Kelly Field, Tex., and El Paso, Tex. Pressure also was high over Seattle, Wash., up to 2 kilometers, and only relatively high above that level. The free-air relative humidity, shown in table 1, was lowest at the surface over the southern Rocky Mountain region; over the upper Mississippi Valley at 0.5 kilometer; over California and the Middle Atlantic States at 1 and 1.5 kilometers; over the southwestern and southeastern States at 2 and 2.5 kilometers; over the entire far west, and southeastern and upper Mississippi Valley States at 3 kilometers; and over southern California, Florida, and the Great Lakes at 4 and 5 kilometers. These were marked changes from those existing in May when humidities were lowest over western Texas and the Middle Atlantic States at all levels. During June the lowest humidities recorded at all levels above 1 kilometer were found in California over Oakland, Burbank, and San Diego. Above 3 kilometers the humidity was also low over Pensacola, Fla., and Maxwell Field, Ala. High humidities prevailed over the north Atlantic States (Boston, Mass., Lakehurst, N. J., and Washington, D. C.) at all levels, and over the Rocky Mountains at 4 kilometers (Billings, Mont.) and 5 kilometers (Cheyenne, Wyo.). Free-air resultant wind directions and velocities, based on pilot-balloon observations made near 5 a.m. (75th meridian time), during the month of June 1938, are shown in table 2. While these resultants indicated a generally normal trend over most of the United States, there were several noteworthy exceptions, Over the Pacific northwest sharp departures from normal resultant directions at all levels occurred over Medford, Oreg., and Seattle, Wash. The former was outstanding for the entire country. Elsewhere, unusual departures were noted at Houston, Tex., Sault Ste. Marie, Mich., Pensacola, Fla., Newark, N. J., and Albuquerque, N. Mex. On the other hand, at Omaha, Nebr., Chicago, Ill., and Cheyenne, Wyo., small departures were recorded, and the resultant winds remained very close to the normal at all Greatest variations in direction at all levels shifted from Seattle, Wash., where they were recorded in May, south to Medford, Oreg., in June. At the surface the resultant wind was south of normal, i. e., when considered as being rotated in a counterclockwise direction. But between 0.5 and 1 kilometer, the wind became normal, then, up to 5 kilometers, all directions were north of normal when rotated in a clockwise direction. Above 1 kilometer a uniform northerly increase in departure from normal was noted at all levels until there was a difference of 123° at 2.5 kilometers. These resultant directions for June, at all levels beginning with the surface, were: 235°, 273°, 303°, 338°, 14°, 10°, 290°, 293°, and 292°, as compared to the established normals of 287°, 283°, 299°, 305°, 288°, 247°, 241°, 257°, and 264°, respectively. At Seattle, Wash., departures occurred at 1 and 1.5 kilometers, where differences of 103° and 74°, respectively, were noted. Resultant departures at Seattle, Wash., during June were greater, or north of normal, at all levels. A large southerly departure from normal occurred over San Diego, Calif., at 0.5 kilometer, but resultant winds for levels exceeding 1 kilometer could not be obtained in June. Elsewhere in the United States all observations reached 3 kilometers; only 9 stations failed to reach 5 kilometers. Pensacola, Fla., had northerly departures from normal between the 0.5- and 2.5-kilometer levels. But, over Key West, Fla., all departures were south of normal up to 2 kilometers, and then north of normal up to 5 kilometers. At Newark, N. J., and St. Louis, Mo., all June resultants were north of normal when rotated clockwise, and at Boston, Mass., Atlanta, Ga., Billings, Mont., and Chevenne, Wyo., they were south of normal when rotated counterclockwise. Greatest differences in resultant directions from the normal occurred at Sault Ste. Marie, Mich., on the surface; over San Diego, Calif., at 0.5 kilometer; over Seattle Wash., at 1 kilometer and 1.5 kilometers; over Albuquerque, N. Mex., at 2 kilometers; over Medford, Oreg., at 2.5 and 3 kilometers; over Newark, N. J., at 4 kilometers; and over Houston, Tex., at 5 kilometers. Of all the resultant winds for June over the United States, 36 percent were from an easterly direction at the surface, tapering off to 4 percent at 2.5, 3, and 4 kilometers. At 5 kilometers all directions were westerly, but divided equally between the southwest and northwest quadrants. Resultant wind velocities for June were slightly above normal over the Pacific Coast States up to 2.5 kilometers, then below normal at the higher levels. They were above normal, too, in the South, except over Houston, Tex., at all levels, and below normal over the North Atlantic States above 0.5 kilometer. These velocities were below normal almost generally elsewhere at and above 1 kilometer, except over Salt Lake City, Utah, and Albuquerque, N. Mex., at 5 kilometers. The largest below-normal departures in wind velocities were noted over Newark, N. J., at 2, 2.5, 3, and 4 kilometers; at 3 kilometers the difference being 5.9 m. p. s., the greatest for the United States. Other marked departures in velocity above the 2 kilometer level occurred over Boston, Mass., Sault Ste. Marie, Mich., Washington, D. C., and Pensacola, Fla. Maximum wind velocities are shown in table 3. At Modena, Utah, on the 19th, a velocity of 63.3 m. p. s. from the south was observed at 2,470 meters, and at 30 meters higher (2.5 kilometers) a velocity of 58 m. p. s. High velocities also were recorded ever northern stations between Spokane, Wash., and Boston, Mass., on the 7th and 8th. Table 1.—Mean free-air barometric pressure (P) in mb., temperature (T) in °C., and relative humidities (R. H.), in percent, obtained by airplanes and radiometeorographs during June 1938 | | | | | | | | | | | | | Alt | tude | (me | ters) 1 | m. s. | 1. | | | | | | | | | | | | |---|--
---|--|--|--|---|----------|--|---|--|--|---|--|---|--|--|---|---|---|---|---|---|--
---|--|---|---|--| | | | Surf | ace | i | | 500 | | | 1,000 | | | 1,500 | | | 2,000 | | | 2,500 | | | 3,000 | | | 4,000 | | | 5,000 | | | Stations | Num-
ber of
obs. | P | T | R.
H. | P | т | R.
H. | P | т. | R.
H. | P | т | R.
H. | | Barksdale Field, La. 1 (52 m) Billings, Mont. 2 (1,090 m) Boston, Mass. 5 (5 m) Cheyenne, Wyo. 3 (1,873 m) Coco Solo, C. Z. 2 (15 m) El Paso, Tex. 3 (1,193 m) Fargo, N. Dak. 2 (274 m) Keily Field, Tex. 1 (206 m) Lakehurst, N. J. 3 (39 m) Maxwell Field, Ala. 1 (52 m) Mitchel Field, N. 2 (10 m) Nashville, Tenn. 2 (180 m) Norfolk, Va. 3 (10 m) Oakland, Calif. 3 (2 m) Oklahoma City, Okla. 2 (391 m) Orabla, Nebr. 3 (300 m) Pearl Harbor, T. H. 3 (6 m) Pensacola, Fla. 3 (13 m) Salt Lake City, Utah. 2 (1288 m) Salt Lake City, Utah. 2 (1288 m) Salt Lake Marie, Mich. 3 (221 m) Scott Field, Mich. 1 (177 m) Selfridge Field, Mich. 1 (177 m) Selfridge Field, Mich. 1 (177 m) Spokane, Wash. 2 (507 m) Washington, D. C. 3 (13 m) Wright Field, Ohio 1 (244 m) Burbank, Calif. 2 (220 m) Chicago, Ill. 3 (187 m) | 29
24
24
22
22
23
30
30
16
29
29
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | 891
1, 014
813
1, 009
880
981
991
1, 012
995
1, 013
970
980
1, 016
1, 016
869
1, 013
995
1, 016
1, 016
869
1, 013
995
1, 016
1, 018
869
1, 012
1, 018
995
1, 018
1, 01 | 14. 4 16. 8 9 24. 7 7 22. 4 7 17. 1 19. 3 20. 5 18. 6 2. 2 22. 3 10. 8 10. 17. 1 17. 9 15. 1 17. 1 17. 9 15. 1 18. 6 6 15. 7 5 | 846
846
866
821
877
886
867
878
878
878
878
878
878
878 | 9577
- 955
- 955
958
960
959
959
963
955
961
961
962
- 956
960
959
959
959
959
959
959
959
959
959
95 | 22. 7 16. 3 23. 4 16. 5 23. 1 18. 3 21. 2 20. 7 21. 9 20. 9 21. 4 13. 5 2 19. 8 12. 9 17. 2 18. 1 18. 1 18. 0 | 74 | 902
901
905
905
906
904
905
909
901
904
908
908
908
909
909
909
909
909
909
909 | 14. 1
20. 9
14. 7
20. 5
15. 0
19. 3
15. 9
18. 6
20. 7
20. 5
18. 5
17. 9
20. 1 | 59
78
63
68
66
72
58
39
68
63
86
70
67
67
67
67
67
67
67
67
67
67
67
67
67 | 854
851
851
850
849
853
855
852
853
856
859
853
856
857
858
858
859
853
856
859
853
856
857
858
858
858
858
858
858
858
858
858 | 15. 5
11. 3
22. 9
12. 3
11. 4
16. 1
15. 7
15. 5
16. 5
15. 5
16. 5
11. 8
10. 8
11. 7
12. 6
13. 6
13. 6
14. 7
12. 6
13. 6
13. 6
14. 7
15. 5
16. 5 | 844
422
597
666
665
738
822
711
644
766
882
421
411
696
670
670
48 | 800
8011
8012
802
7999
805
806
808
801
805
805
807
805
807
808
801
800
803
804
803
804
805
806
807
808
809
809
809
809
809
809
809
809
809 | 12.7
8.3
115.8
20.3
12.5
7.6
12.8
7.6
12.5
13.3
13.3
13.3
14.4
14.3
15.4
16.4
17.8
18.3
19.4
10.4
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 51
64
82
41
60
67
62
65
65
65
65
67
72
39
31
72
63
50
65
63
50
63
63
63
63
63
63
63
63
63
63
63
63
63 | 753;
753;
754;
756;
756;
758;
757;
755;
757;
757;
757;
757;
757 | 9.3
5.67
10.5
10.9
11.3
10.9
11.7
12.9
11.7
12.3
13.3
13.3
13.3
13.3
13.3
13.3
13.3 | 555 588 522 566 556 569 561 562 561 565 570 661 565 570 661 565 570 663 570 670 670 570 670 670 570 570 570 570 570 570 570 570 570 5 |
709
708
7111
7122
713
707
714
710
713
716
710
713
715
716
710
710
711
705
712
709
709
711
711 | 6.1 1 3.8 11.0 3.3 1.8 3.5 7.1 1.7 7.2 4.3 3.5 7.1 1.7 7.2 3.3 8.5 8.8 10.2 2 1.0 0.6 7.3 3.4 1.4 4.4 6.9 3 | 577 544 513 533 577 54 54 553 577 599 579 599 599 599 599 599 599 599 | 626
628
631
632
624
631
632
631
632
632
632
632
632
632
632
632
632
632 | -0.3 (1.0 ± 0.0 ± | 5748
5557448
57447
57752
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852
57852 | 552
558
558
558
559
557
557
556
558
560
554
556
556
556
556
557
556
556
557
556
558
557
556
558
557
556
558
558
558
558
558
558
558
558
558 | -7.24.3
-1.7.99
-2.93
-4.00
-4.00
-3.23
-3.23
-3.23
-3.23
-7.52
-7.52
-7.52
-4.00 | 42
65
81
56
47
56
45
41
40
45
50
26
35
52
43
35
43
43
43
43
43
45
54
54
54
54
54
54
54
54
54
54
54
54 | Observations taken about 4 a. m. 75th meridian time, except by Navy stations along the Pacific coast and Hawaii where they are taken at dawn. NOTE.—None of the means included in this table are based on less than 15 surface or 5 standard-level observations. Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 5 a.m. (E. S. T.) during June 1938 [Wind from $N=360^{\circ}$, $E=90^{\circ}$, etc.] | Altitude | Albud
qu
N. M
(1,55 | e,
Iex. | Atla
Ga
(309 | a. İ | Billi
Mo
(1,088 | nt. | Bost
Ma
(15 | ss. | Cheye
Wy
(1,873 | 70. I | Chic
Ill
(192 | l." | Cine
na
Oh
(157 | ti,
io | Deta
Mic
(204 | ch. | Far
N. I
(283 | Jak. | Hous
Te
(21 | x. | Key Ti | a. [| Med
Or
(410 | eg. í | Nash
Ten
(194 | n. | |----------------------|--|------------|---|--|---|----------|--|--|-----------------------|--|--|--|--|--|---|--|--|--|---|--|---|--|---|---|---|--| | (meters)
m. s. l. | Direction | Velocity | Surface | 351

138
217
241
230
242 | 0.6
 | 267
234
251
254
254
266
280
292
303 | 0. 4
1. 7
3. 2
3. 7
4. 6
5. 2
4. 9
5. 2 | 270
273
285
263
268
261
247 | 1.6
 | 258
270
283
269
263
273
288
268 | 1, 4
5, 1
4, 7
4, 1
4, 2
4, 5
5, 4
6, 8 | 265
 | 2. 0

3. 7
5. 2
5. 6
6. 6
5. 9 | 235
235
258
262
274
286
299
312 | 1. 2
3. 8
4. 3
4. 2
5. 3
4. 6
6. 5
6. 8 | 103
220
254
265
275
300
294
311 | 0. 2
2. 1
3. 4
4. 1
5. 9
5. 2
6. 2
5. 5 | 250
248
257
260
261
260
286
307
307 | 1. 3
2. 7
3. 6
5. 1
5. 4
5. 9
4. 7
6. 2
6. 9 | 137
168
248
297
293
303
299
298 | 1. 4
2. 9
1. 8
3. 4
4. 8
5. 5
6. 0
6. 4 | 153
186
184
184
186
190
160
348
337 | 1. 0
7. 1
6. 7
5. 4
4. 3
2. 9
1. 7
0. 6
1. 0 | 121
120
127
136
146
212
200
205
252 | 1. 7
3. 4
2. 7
1. 6
0. 8
0. 8
2. 0
2. 3
3. 3 | 235
273
308
338
14
10
290
293
292 | 0.3
1.1
2.5
1.6
2.5
1.7
2.5
3.9
3.8 | 223
237
248
254
255
265
262
256
276 | 5. 2
2. 3
3. 8
4. 4
5. 3
6. 2
6. 4
5. 1
5. 7 | ¹ Army. 2 Weather Bureau. 2 Navy. Observations by
radiometeorograph. Stations not so marked have observations by airplane. Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 5 a.m. (E. S. T.) during June 1938-Continued | Altitude
(meters) | News
N.
(14) | J. ` { | Oakla
Cal
(8 r | if: | Oklah
City,
(402 | Okla. | Oma
Net
(306 | or. | Pearl
bor, 7
tory
Haw
(68 | erri-
of
aii ¹ | Pensa
File
(24 | 1.1 | St. L
M
(170 | ο. ΄ | Salt 1
City.
(1,29) | Utah | San I
Cal
(15 | lif. | Sault
Mar
Mic
(198 | rie,
ch. | Seat
Wa
(14 | sh. | Spok
Wa
(603 | sh. | Wash
ton, I
(10 | D. Č. | |----------------------|--------------------|--|---|---|--|--|--|--|---------------------------------------|---------------------------------|--|--|---|---|---------------------------------|--|---------------------|----------------------|---|--|---|--|---|--|--|--| | m. s. 1. | Direction | Velocity o Direction | Velocity | Direction | Velocity | Direction | Velocity | Direction | Velocity | | Surface | 1 - 1 | 1.1
4.2
3.8
4.1
3.9
3.2
2.5
3.7 | 256
238
314
323
322
318
269
293
248 | 2.0
2.7
5.5
3.9
4.0
3.5
2.0
4.7
6.8 | 152
167
200
219
244
273
289
316 | 2.6
4.3
7.5
5.6
4.0
4.5
3.7
3.3 | 161
187
213
235
259
276
279
292 | 1.9
4.7
5.6
5.1
5.6
5.8
6.7
6.4 | | | 328
282
268
271
281
288
296
304 | 1. 2
2. 2
2. 6
3. 6
3. 9
5. 0
4. 3
3. 5 | 238
261
286
282
283
287
284
328
347 | 0.8
2.5
3.0
3.2
4.2
4.9
5.6
6.7
5.4 | 152
137
170
206
244 | 1. 9
1. 3
1. 8
3. 1
5. 9
9. 1 | 233
204
344 | 1. 1
0. 5
0. 6 | 254
295
272
271
261
271
292
306
295 | 0. 5
2. 6
4. 4
5. 1
6. 6
5. 6
6. 4
5. 5 | 149
12
24
348
291
265
251 | 1. 4
1. 3
1. 4
1. 4
1. 8
2. 0
3. 4 | 217
266
252
250
252
257
263 | 1.4
0.5
1.3
2.3
2.6
4.0
5.4
6.9 | 271
321
319
316
302
280
306
296 | 0.4
2.8
3.1
3.5
2.9
4.0
7.9
5.2 | ¹ Navy stations Table 3.—Maximum free-air wind velocities, (meters per second) for different sections of the United States based on pilot-balloon observations during June 1938 | | | Surfac | e to 2,50 | 00 m | eters (m. s. l.) | | Between 2 | ,500 and | 1 5,00 | 0 meters (m. s. l.) | Above 5,000 meters (m. s. l.) | | | | | | | | |--|---|-----------|---|--|---|---|--------------------------|----------------------------|---|---------------------|---|--|--|---|---|--|--|--| | Section | Maximum ve-
locity | Direction | Altitude (m),
m. s. l. | Date | Station | Maximum ve-
locity | Direction | Altitude (m),
m. s. l. | Date | Station | Maximum ve-
locity | Direction | Altitude (m),
m. s. l. | Date | Station | | | | | Northeast 1 East-Central 2 Southeast 3 North-Central 4 Central 4 South-Central 5 South-Central 5 Northwest 7 West-Central 8 South-West Central 8 | 34. 0
26. 4
20. 3
32. 7
36. 0
33. 1
29. 9
63. 3
27. 3 | W | 2, 230
630
1, 870
1, 960
1, 710
2, 500
2, 470 | 7
11
21
1
6
10
8
19 | Buffalo, N. Y Cincinnati, Ohio Jacksonville, Fla Bismarck, N. Dak Indianapolis, Ind. Abilene, Tex. Missoula, Mont. Modena, Utah. Sandberg, Calif. | 36, 3
24, 6
20, 4
38, 0
30, 8
27, 6
37, 0
58, 0
46, 2 | W
W
SW
WSW
W | 4, 660
2, 630
3, 690 | 8
5
12
7
10
26
8
19
9 | Cleveland, Ohio | 36. 8
40. 0
20. 9
31. 5
32. 0
25. 0
43. 5
41. 6
40. 8 | W.W.W.WSW
WNW
WNW
W
NNE
WSW | 11, 070
9, 160
8, 110
11, 070
7, 850
6, 080
6, 300 | 8
8
9
8
17
5
19
17
16 | Houston, Tex.
Medford, Oreg.
Reno, Nev. | | | | ¹ Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio. 2 Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina. 2 South Carolina, Georgia, Florida, and Alabama. 4 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota. 5 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri. 6 Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and western * MISSISSIPPI, ALLEANDE, Tennessee. 7 Montana, Idaho, Washington, and Oregon. 8 Wyoming, Colorado, Utah, northern Nevada, and northern California. 9 Southern California, southern Nevada, Arizona, New Mexico, and extreme west ## RIVERS AND FLOODS [River and Flood Division, MERRILL BERNARD in charge] By BENNETT SWENSON Severe floods occurred during June 1938, principally in the Neosho, Smoky Hill, and Osage Rivers in Kansas. Excessively heavy local showers in Montana caused disastrous, sudden floods in that State with great property damage amounting to nearly \$1,000,000 and the loss of about 58 lives, 48 of which were lost in the train wreck caused by a flood in Custer Creek, which flows into Yellowstone River about 30 miles below Miles City, Mont. High water in the San Joaquin and Columbia River basins caused considerable overflowing in those basins. A number of other floods, mostly of a minor character, also occurred with no damage of great consequence. Flood heights at all of the gaging points are shown in the accompanying table. The following report on the floods in the Topeka, Kans., river district is submitted by the official in charge at that Four overflows occurred in the Neosho River in Kansas during the month and the month preceding, one along the upper Smoky Hill, one along the Osage, one in the upper Solomon, and one in the Saline River. The first overflow of the Neosho was one that started in May and which began at Le Roy and Iola, Kans., on May 20 and by the 22d extended along the entire river below Emporia, Kans. This was preceded by a slight overflow at Le Roy on May 13 and at Iola and Chanute, Kans., on May 14. At Neosho Rapids and Le Roy the serious May overflow had subsided by May 26 and 29, respectively, but from Iola to the Oklahoma line it continued into June. At Oswego, Kans., where the crest was 23.5 feet, 6.5 feet above bankful, on June 1, the river did not return to its banks until June 6, making a total of 15 days for the overflow at that place. While crest stages did not approach previous records at any place the duration of this overflow caused great damage to growing place, the duration of this overflow caused great damage to growing crops, estimated at \$342,500, with 145,000 acres flooded. The total property loss was estimated at \$410,350. One life was lost, though not directly due to the high water. A slight overflow of the Neosho occurred at Le Roy on June 1 and at Iola on June 1 and 2 but caused little damage. Another overflow of the Neosho occurred in Labette County, beginning June 17. This reached a crest of 24.0 feet, 2.0 feet above bankful, at Parsons, Kans., on the 17th and 21.8 feet, 4.8 feet above bankful, at Oswego on the 18th. Damage from this overflow totalled \$28,000, being mostly to crops and livestock Heavy rains that totalled 5.33 inches at Council Grove, Kans., fell along the upper reaches of the Neosho River on June 10 and resulted in a disastrous overflow in that city and downstream to the junction of the Neosho with the Cottonwood River. Damage from this overflow was estimated at \$314,806 the greater part of which was to property in Council Grove, and to growing crops. At Neosho Rapids, just below the mouth of the Cottonwood River, the highest stage measured was 22.8 feet, 0.8 foot above bankful, on the evening of the 12th, at which time the river was believed to